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Potential energy landscape and long-time dynamics in a simple model glass
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We analyze the properties of a Lennard-Jones system at the level of the potential energy landscape. After an
exhaustive investigation of the topological features of the landscape of the systems, obtained by studying small
size samples, we describe the dynamics of the systems in multidimensional configurational space by means of
a simple model. This considers the configurational space as a connected network of minima where the dynam-
ics proceeds by jumps described by an appropriate master equation. Using this model we are able to reproduce
the long-time dynamics and the low temperature regime. We investigate both the equilibrium regime and the
off-equilibrium one, finding those typical glassy behaviors usually observed in the experiments such as~i! a
stretched exponential relaxation,~ii ! a temperature-dependent stretching parameter,~iii ! a breakdown of the
Stokes-Einstein relation, and~iv! the appearance of a critical temperature below which one observes a devia-
tion from the fluctuation-dissipation relation as a consequence of the lack of equilibrium in the system.

PACS number~s!: 61.20.Lc, 64.70.Pf, 82.20.Wt
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I. INTRODUCTION

The landscape paradigm@1# is a very useful point of view
for the study of glassy systems. The detailed analysis of
energy or potential energy surfaces allows us to obtain
sight into the rich phenomenology exhibited by glas
forming liquids in the supercooled phase, around the g
transition region and in the low temperature glassy regim
While the investigation of the free energy surface is a v
hard task starting from a microscopic description of the s
tem, since the landscape details are very strongly temp
ture dependent, the description of the potential energy la
scape is a much more tractable problem, and is a g
starting point to investigate properties at not-too-high te
peratures. The trajectory of the representative point of
system in configurational phase space can be viewed
path in the multidimensional potential energy surface. T
dynamics is strongly influenced by the topography of
landscape: local minima, barrier heights, attraction bas
and further topological features. In recent years it has b
shown that the details of the potential energy surface ar
great importance in determining the properties of many s
tems exhibiting glassy behavior, like glass-forming liqui
and protein folding, atomic cluster, or evolutionary biolog
cal models.

In this paper we numerically investigate the low tempe
ture dynamical properties of a simple system, i.e. a m
atomic Lennard-Jones system, through an analysis of its m
tidimensional potential energy surface and a simple mo
for the low temperature dynamics. In the first part~Sec. II!,
by studying a small sample size, we give a comprehen
description of the potential energy landscape of
systems—minima, barriers, reaction paths, and sad
points—and determine statistical distributions and cro
correlations between the analyzed quantities. In the sec
part ~Sec. III!, we use this information to set up a simp
model for the study of the long-time relaxation dynamics
the system: The model consists of a connected networ
PRE 611063-651X/2000/61~2!/1681~11!/$15.00
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potential energy minima with a jump dynamics described
an appropriate master equation. This allows us to obtain
formation about the behavior of the system for times lo
enough that a direct molecular dynamics~MD! simulation is
not feasible@2#. After a static~thermodynamical! test of the
model, we determine the dynamical equilibrium propert
and also the off-equilibrium ones, and discuss the results
Sec. IV we report the conclusions.

II. POTENTIAL ENERGY LANDSCAPE

We numerically investigate the topology of the potent
energy hypersurface of a Lennard-Jones 6–12 systemN
interacting particles in a cubic box with periodic bounda
conditions. The pair potential is

VLJ~r !54eF S s

r D 12

2S s

r D 6G , ~1!

with r the Euclidean distance between two particles. T
physical parameterss ande are chosen to describe an argo
system:s50.3405 nm ande/kB5125.2 K (kB is the Bolt-
zmann constant!. In order to obtain an exhaustive descriptio
of the energy landscape, we investigate small size syste
with a number of particlesN,30. As we shall see later, suc
small systems can nevertheless exhibit quite complex be
iors.

Due to the small size of the system, the range of inter
tions among the particles is of the same order as the
length. It is then much more appropriate to use a multi-ima
method instead of the usual minimum image method@3#, in
which each particle interacts only with the nearest ima
~generated by the periodic boundary conditions! of all other
particles. In our case many images contribute, and it is n
essary to consider them in the calculation of the interactio
The choice we made introduces an angular dependence i
pair potential which, however, is negligible with respect
the radial one. The simulated density isr54.2
1681 ©2000 The American Physical Society
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31022 mol/cm3, which was obtained by Demicheliset al.
@5# as the smallest value at which a Lennard-Jones syste
N5864 argon particles is stable in the glassy state afte
rapid quench from high temperature.

A. Minima

As a first step we search for the potential energy minim
We use a modified conjugate gradient method starting fr
high temperature configurations obtained during a MD sim
lation. In this way we find the so-called ‘‘inherent config
rations,’’ corresponding to local minima. New minima a
identified by their potential energy values. We analyze s
tems with N511–29 and, for eachN, we stop the search
when the rate at which new low energy minima are fou
~for example in lowest first third of the full energy range! is
smaller than a given number~about 1024). In this way we
are able to obtain a good classification of the low ene
minima. The number of detected minima,N, does not show
a clear and well defined dependence onN, contrary to the
case of small clusters@6#, so that it is not possible to give a
estimate of the coefficienta in the expected exponentia
growth: N}exp(aN) ~for clustersa;1). Indeed, for some
values ofN we observe a strong tendency of the system
fall always in the same minima. In this case an exhaus
research of the inherent structures is a very hard nume
task. This explains the unclear dependence found. Once
minima are classified, we analyze their features: ene
static structure factor, curvature, and distances.

1. Energy

The first important information about an inherent config
ration is its potential energy value. From the energy distri
tion it is sometimes possible to recognize the crystallinel
configurations. Usually one finds an evident gap between
lowest energy minima, the crystallinelike ones, and the ot
ones with higher energies, as can be seen in Fig. 1 wher
show the distribution of minima energies per particle forN
529. In other cases the situation is not so clear, and i
useful to use a different method to characterize the natur

FIG. 1. Distribution of the potential energy~in K per particle! of
the minima for the systemN529. In the inset the distribution of the
curvature isgmin .
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an inherent configuration; the most useful quantity in det
mining the spatial order structure of a minimum is its sta
structure factor, which allows~imperfect! crystal-like con-
figuration also of high energy to be identified.

2. Static structure factor

In order to classify the spatial distribution of particle in
given minimum of the potential energy we use the sta
structure factor

Ŝ~qW !5
1

N U(
j

exp~ iqW •rW j !U2

. ~2!

Due to the finite size of the system the allowedqW vectors are
of the form qW 5(2p/L) nW , with nW 5(nx ,ny ,nz) an integer
vector. We define the quantity

S~q!5
1

nq
(

qW P$q,Dq%

Ŝ~qW !, ~3!

where(qW P$q,Dq% is a sum over thenq vectors with modulus
within q6Dq. For a pure crystalline configuration ofN par-
ticlesS(q) consists of Bragg peaks, and its value at the pe
is Smax5N. For amorphous configurationsS(q) does not
present a well defined peak structure, and the highest valu
Smax;2 –3, obtained for aq value of the order of the invers
mean distance of two near particles. For small sized syste
like those analyzed here, there are intermediate situat
and we use the criterionSmax,N/2 to determine the amor
phous nature of an inherent structure.

3. Curvature

Another important property of a minimum is its overa
curvaturec, defined as the determinant of the HessianF9 of
the potential energy functionF:

c5det~F9!. ~4!

The eigenvalues of the Hessian matrix are proportional to
squared vibrational eigenfrequencies. In the inset of Fig
we show the distribution of

g5
1

3N23
log10~c/m!1/2, ~5!

wherem is the mass of the particles~we use the argon value
m540 amu!. The quantityg is thus proportional to the sum
of the logarithms of the frequencies of normal vibration
modes

g5
1

3N23 (
a

ln va , ~6!

with a51, . . . ,3N23 ~the three zero frequencies corr
sponding to rigid translations have been eliminated from
sum!. As can be seen in Fig. 1, the highestg values corre-
spond to the minima with lowest energy, i.e. the crystallin
like minima which are narrower and deeper than the ot
packing structures~see also Sec. II C!.
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4. Stress tensor

For each minimum we determined the off-diagonal part
the microscopic stress tensor,

szx52(
i , j

VLJ8 ~r i j !
zi j xi j

r i j
,

sxy52(
i , j

VLJ8 ~r i j !
xi j yi j

r i j
, ~7!

syz52(
i , j

VLJ8 ~r i j !
yi j zi j

r i j
,

wherexi j , yi j , andzi j are the components ofrW i j 5rW i2rW j ;
these quantities will be useful in determining the shear v
cosity. The form of the stress tensor we use is theq50
extrapolation of theq-dependent expression@7#

sa,b~qW !5(
i

Fmv i ,av i ,b2(
i , j

r i j ,ar i j ,b

r i j
2

Pq~r i j !Gexp~ iqW •rW i !,

~8!

with

Pq~r !5rVLJ8 ~r !
12exp~ iqW •rW !

iqW •rW
. ~9!

The indexesi andj refer to particles, whilea andb label the
spatial axesx, y, and z. In Eq. ~7! we have omitted the
kinetic term, not well defined in an inherent configuratio
our hypothesis is that also this truncated form is well able
describe the relaxation processes.

5. Distances

We now turn to the relationships among the minima;
particular we determined the mutual distances in
3N-dimensional configuration space; in this regard it is i
portant to take into account all the symmetry operations
the problem. Indicating withr a5(rW1

a , . . . ,rWN
a ) the 3N coor-

dinates of the particles in the minimuma, we define the
distancesdab between minimaa andb,

dab5 min
T,R,p

~ ur a2r bu!, ~10!

where the minimization is made with respect to the conti
ous translations (T), discrete rotations and reflections (R),
and permutations (p) of the particles.

The minimization over the continuous translations~T! is
done by putting, sequentially, each particle ofa in the same
place as each one ofb. The minimization over the rotation
and reflections~R! is carried out by considering the 48 sym
metry operations of the cubic group; the minimization ov
particle permutation (p) is apparently a hard task to solve,
one should consider all theN! possible configurations in a
direct calculation, but this is not actually the case. The pr
lem is of polynomial type, i.e., the time needed to find t
optimum solution grows as a polynomial function of the siz
N, of the system~on the other hand nonpolynomial problem
require an exponential computational time, i.e., the ‘‘trav
f
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ing salesman’’ problem!. The optimization problem we nee
to solve is a bipartite matching problem, which can be do
in very short computational time by using an appropria
algorithm.

B. Barriers

A very important topological quantity in determining th
dynamical behavior of the system is the energy barrier ex
rienced by the system in traveling from one minimum
another. At first sight it might seem that it is accurate enou
to evaluate the barrier along the straight path joining t
minima in 3N-dimensional space. However, as shown
Demichelis et al. @5#, in most cases this produces muc
higher barriers than an evaluation along the least action p
indicating that the straight path approximation is often n
good. We have then determined the least action path for e
pair of minima a and b, which is defined as the path tha
minimizes the action functional

S@ l #5E
l
dsA2m@F„r ~s!…2F0#, ~11!

where l is a generic path between the minima,s is the cur-
vilinear coordinate, andF05min$Fa ,Fb%. This functional
problem is simplified by dividing the path into a finite num
ber of intervals~typically we usen516 intervals! and by
minimizing the action function with respect to the extreme
the n segments constrained to move in hyperplanes perp
dicular to the straight path. The highest potential ene
value along the least action path determines the bar
height and identifies the saddle point.

We have only analyzed the system withN<17, due to the
very long computational times needed in the cases withN
.17, where there are too many pairs of minima to take i
account. We report the results for the largest system a
lyzed, N517, with N538 minima. In Fig. 2 we show an
example of the potential energy profile along the strai
path ~dashed line! and along the least action path~full line!
between two minima. It is evident that the energy barrier
significantly lower in the latter case, although the two pa
are not very distant in configuration space. Similar results

FIG. 2. An example of the potential energy profile along t
least action path (d) between two minima, compared with th
straight path (s) for the systemN517.



e
th
m

ve

th
y.
r
th
te

ity

of
a

th

o-
he
en
ffi

in
n

all
y
ted,
n-
is
ints

-
ur-
ar-

io

s

the
ow

1684 PRE 61L. ANGELANI, G. PARISI, G. RUOCCO, AND G. VILIANI
obtained for the other analyzed paths. Sometimes it happ
that two minima are not directly connected, in the sense
the least action path joining them crosses a third minimu
and a nontrivial connectivity among the minima emerges~in
the analyzed system we find that each minimum on an a
age is directly connected to 20 other minima!. For each
saddle point along the least action path we determine
main properties: energy, curvature, and down ‘‘frequenc
Figure 3 shows the energy distribution of the barrie
DFbar . The curvature is defined as the absolute value of
determinant of the Hessian of the potential energy evalua
at the saddle:

csad5udetFsad9 u. ~12!

In the inset of Fig. 3 we show the distribution of the quant

gsad5
1

3N23
log10~csad/m!1/2. ~13!

The down ‘‘frequency’’ṽsad is defined as the square root
the absolute value of the down curvature along the least
tion path,

ṽsad
2 52

vFsad9 v

uvu2
, ~14!

wherev is the tangent vector to the least action path at
saddle point.

C. Correlations

In order to obtain a full statistical description of the p
tential energy landscape, it is also useful to investigate t
cross-correlations, as well as the distributions of the differ
quantities. We then determined the linear correlation coe
cient

FIG. 3. Energy distribution of the barriers along the least act
paths among the minima of the systemN517. The inset shows the
distribution of the curvaturegsad of the saddle points.
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~xi2 x̄!~yi2 ȳ!

F(
i

~xi2 x̄!2(
j

~yj2 ȳ!2G1/2 ~15!

for all the measured quantitiesx and y. Table I shows the
values obtained, together with the log-log correlations,
order to highlight possible power laws. The first colum
gives the number of particles of the system analyzed~only
for N517 have we determined the least action paths and
the related quantities!. Overall, it appears that the energ
difference and distance among the minima are not correla
indicating that the topological structure of the inherent co
figurations is not energy correlated. A weak correlation
observed between energy and curvature at stationary po
~minima and saddle points!. In Fig. 4 we show the cross
correlation between the energies of the minima and their c
vatures. An interesting correlation is observed between b
rier energiesDFbar and distances among minimadab ~Fig.
5!, with a nearly linear correlation in double log scale~line in
the figure!.

n

TABLE I. Correlation coefficientsr for the measured quantitie
x andy.

N x y r

29 Fa ca 0.13
29 Fa ga 0.46
29 uFa2Fbu dab 0.12
29 lnuFa2Fbu ln dab 0.17
17 uFa2Fbu dab 0.18
17 lnuFa2Fbu ln dab 20.11
17 Fsad csad 0.23
17 Fsad gsad 0.49
17 csad ṽsad

20.12

17 gsad ln ṽsad
20.31

17 dab DFbar 0.47
17 lndab ln DFbar 0.67

FIG. 4. Correlation between energies and curvatures of
minima (N529). The highest curvature values correspond to l
energy crystal minima.
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We conclude the analysis of the energy landscape by
termining the entropy ratioR, defined as the ratio betwee
the curvature of saddle points and that of the related min

R5
udet Fsad9 u

det Fmin9
. ~16!

This quantity gives a quantitative measure of the ability
the system in finding the right path to reach another m
mum. If R;1, there are no entropic hindrances, while ifR
@1 these effects become relevant, as the narrowness~higher
value of the curvature! at the saddle makes the least acti
path toward that specific minimum unfavorable with resp
to other escape routes. For all the minimum-saddle-minim
triplets we have evaluatedR; the majority of the values is in
the range 1022–10, in qualitative agreement with the resu
found in Lennard-Jones clusters@6#.

III. MODEL FOR THE DYNAMICS

The investigation of the properties of glass-former liqu
at the level of the energy landscape allows us to introd
some approximations in the dynamics of the system.
define a simplified model which is able to capture the lon
time behavior of the system, and which consists of a c
nected network of potential energy minima with a jump d
namics among them described by an appropriate ma
equation@2#.

The basic idea is quite simple. A glass structure is rep
sented by a configurational point confined in a very sm
region of the accessible phase space and in the zero tem
ture limit ~neglecting quantum effects!, all the atoms are fro-
zen in well-defined positions, corresponding to some m
chanically metastable state. When the temperature is ra
jumps among different mechanically stable positions beco
possible. At finite and not-too-high temperatures we assu
the dynamically relevant processes are the following
short-time dynamics dominates by small vibrations arou
stable positions~this dynamics can be described within th
harmonic approximation by diagonalizing the dynamical m

FIG. 5. Correlation between energies of the barriers and
tances among minima, on a log scale (N517). The line is the bes
linear fit on a log scale, corresponding to a power law fit~the slope
is a53.7).
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trix!, and a long-time dynamics consisting of collectiv
jumps ~involving many atoms! among different stable posi
tions. The main hypothesis we make is that there is a s
stantially clear separation of time scales between the
dynamical processes. This characterization of the dynam
is a good approximation at not-too-high temperatures.
increasing the temperature, anharmonic effects become
evant to the vibration around the local minimum and, mo
over, a clear time scale separation between fast vibratio
and slow jumps dynamics is no longer possible. In a rec
work @4# the validity of this hypothesis has been verified
Lennard-Jones binary mixtures with a direct MD investig
tion. To sum up, our model, which is expected to capture
physics of the system at low temperature, is based on
main hypotheses:~1! a clearcut difference between vibra
tional dynamics at short time and dynamics of collecti
jumps at long times; and~2! a description of the long-time
dynamics through a master equation, with the transition ra
that depend on the topological properties of the poten
surface. The main advantages of the model we have
scribed with respect to the usual MD computations are
following.

~a! In a simple way we can avoid the crystallization pr
cess that always takes place in one component LJ system
we do not consider the crystalline minima in setting up t
network.

~b! We can study in a direct way the low temperatu
properties, where usually the very long relaxation times
quire very long computational time. In MD the comput
tional times are proportional to the physical times, while
the model introduced here the computational times are th
needed to find the eigenvalues and eigenvectors of the t
sition matrix, independent of temperature.

~c! It is possible to show the relationships between
energy landscape and the behavior of the system.

To be more specific, the model is a connected network
potential energy minima and the master equation govern
the jumps dynamics is

dpa

dt
~ t;b,t0!5(

c
Wacpc~ t;b,t0!, ~17!

wherepa(t;b,t0) is the probability that the system is at min
mum a at time t, if it was at minimumb at time t0. The
off-diagonal elements of the matrixWare the transition rates
The diagonal elements are fixed by the condition

(
a

Wac50. ~18!

In order to obtain an asymptotic behavior that reproduces
right Boltzmann weight, the occupation probability must s
isfy

lim
t→`

pa~ t;b,t0!5pa
0[

1

Z ~det Fa9!21/2 exp~2bFa!,

~19!

(Z is such that(apa
051, and the pre-exponential factor fo

lows from the harmonic vibration in each minimum!, and the
transition matrixW must satisfy the detailed balance relatio

s-
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Wabpb
05Wbapa

0 . ~20!

The solution of the master equation is easily expresse
terms of eigenvaluesln and eigenvectorsaa

(n) (n
51, . . . ,M , with M the matrix dimension! of W:

pa~ t;b,t0!5~pb
0!21(

n
aa

(n)ab
(n) exp@ln~ t2t0!#. ~21!

In the numerical calculus it is more convenient to express
solutions in terms of the eigenvectors of a new symme
matrix wab5Wab(pb

0/pa
0)1/2 ~whose eigenvalues coincid

with those ofW):

pa~ t;b,t0!5~pa
0/pb

0!1/2(
n

ea
(n)eb

(n) exp@ln~ t2t0!#.

~22!

The model is well defined once we give an appropriate fo
to the transition matrixW. In order to determine the trans
tion rates, let us analyze the problem of escape from a m
stable state; a useful point of view for systems with ma
degrees of freedom is the description in terms of a few
evant coordinates. This reduction is possible whenever th
are few reaction coordinates with characteristic evolution
times longer than those of the other degrees of freed
which act as effective terms on the relevant coordinates,
like noise and viscous terms. We suppose this is the cas
our system whenever the temperature is not too high~the
analysis of reaction paths made by Demicheliset al. @5# sup-
ports this hypothesis!. Handling the problem as a Markovian
Brownian d-dimensional motion in the overdamped frictio
regime, we obtain the form@8#

Wab5
ṽsad

2

m F det Fb9

udet Fsad9 uG
1/2

expF2
Fsad2Fb

KBT G , ~23!

whereṽsad is the down ‘‘frequency’’ at the saddle point, an
m is a friction constant that determines the time scale~its
value is fixed by a comparison with MD in the allowed tem
perature region!.

All the characteristics of the model~properties of the con-
nected network and parameters in the transition rates! are
inferred from the computed properties of the potential ene
landscape. We use the values of theN529 system to deter
mine local minima properties~energy, curvature, and stres
tensor!, and those of theN517 system to determine conne
tivity properties~energy and curvature of saddle points, d
tances, and connectivity among the minima!. The values are
extracted from the distribution found in Sec. II in the follow
ing ways.

~1! We extractM energy values of the minima from th
distribution ofN529 system~we exclude the crystallinelike
configurations!.

~2! We assign to each minimum a value of curvatureca

5det Fa9 extracted from a bivariate distribution, thanks
the cross-correlation between energy and curvature; a s
tensor value is also extracted for each minimum.

~3! For each minimum we randomly extract~in the analy-
sis of the energy landscape we have found no correla
in

e
c

ta-
y
l-
re
y
,
.,

for

y

-

ss

n

between energies and distances among minima! 20 minima
connected to it, as obtained on an average for the systeN
517.

~4! We define a connection matrixkab , containing the
minimum steps, i.e., the number of minima crossed, nec
sary to go froma to b; the distance matrixdab is kab times
the value extracted from the distribution of the distanc
among connected minima forN517.

~5! For each pair of directly connected minima we det
mine the energy barriersDFbar from the value of the dis-
tance dab : DFbar5A da (A.105 and a.3.7, as deter-
mined forN517 system, Fig. 5!.

~6! We assign a curvature valuecsad5udet Fsad9 u and a

down ‘‘frequency’’ ṽsad to each saddle point, from bivariat
distribution.

In this way we obtain a set of parameters that descri
the model. In order to achieve a good statistical descript
we considered different extractions of the parameters,
the measured quantities were obtained by averaging ove
extractions.

A. Test

Before studying the dynamical properties of the mod
we concentrate on the static behavior obtained as
asymptotic solution of the master equation. In this static
gime we can determine, in a statistical mechanical appro
the configurational partition function

Z~b!5E d3Nr exp@2bF~rW1 , . . . ,rWN!#. ~24!

By using the approximation based on the hypothesis of sh
time local harmonic vibrations around a minimum, and lon
time collective jumps among different minima, we obtain

Z~b!;(
a

Z a
(harm)~b!exp@2bFa#, ~25!

wherea labels the minima, andZ a
(harm) is the contribution of

harmonic vibrations around minimuma. This form of the
configurational partition function emerges in the model
the exact infinite-time limit. The harmonic term is easy
calculate, being a 3N-dimensional Gaussian integral,

Z a
(harm)~b!5E drexpF2

b

2
rFa9r G

5~2p!3N/2b23N/2~det Fa9!21/2, ~26!

where r 5(r 1 , . . . ,r 3N), and rFa9r 5( l ,mr l(Fa9) lmr m . We
then obtain the approximated partition function as

Z~b!;cb23N/2(
a

~det Fa9!21/2 exp~2bFa!, ~27!

from which the thermodynamical quantities can be deriv
for example for the energyE(b)52]b ln Z. To check the
reliability of the model we compare the quantities calcula
from Eq.~27! with those obtained through MD computatio
In Fig. 6 we show the potential energy as obtained from
model ~lines! and from MD ~circles!. The MD data are ob-
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tained in the following way. Starting from high temperatu
we rapidly quench the system to low temperature, enterin
a glassy state; we then increase the temperature up to li
phase ~open circles!. The system is subsequently slow
cooled, entering in the supercooled regime~100–70 K! and
at the end obtaining the crystal through a first order transi
~full circles!. The lines represent the energies determin
from the model by taking into account all the minima~dotted
line! and only the glassy ones~full line!. A good quantitative
agreement is obtained between MD and the model as fa
the temperature is lower than about 150 K, a temperatur
the liquid phase well above the melting point (Tm;80 K!.
This result supports the correctness of the approximatio
local vibration and collective jumps in the description of
glass former at not-too-high temperature. This static test
good starting point to extend the analysis to the dynam
regime.

B. Equilibrium properties

We now determine the dynamical equilibrium propert
of the model. WithO„r (t),r (0)… we denote a generic ob
servable which depends on collective coordinatesr at time t
and at initial timet50. We define the statistical averag
value ofO in the model as

^O~ t !&5(
b

pb
0(

a
Oabpa~ t;b,0!, ~28!

whereOab is the value ofO evaluated at the minimum con
figurationsa and b: Oab5O(r a ,r b). In terms of the eigen-
values and eigenvectors of the transition matrixW, we have

^O~ t !&5(
n

exp~lnt !(
a,b

Oabaa
(n)ab

(n) , ~29!

or, in terms of the eigenvectors of the symmetric matrixw,

FIG. 6. Potential energy vs temperature as determined from
(N529) and from the model. The MD (s) are obtained by heating
the glass and (d) cooling the liquid. The dotted line refers to th
model using all the minima, and the full line to the model usi
only the glassy minima.
in
id

n
d

as
in

of

a
al

^O~ t !&5(
n

exp~lnt !(
a,b

Oab~pa
0pb

0!1/2ea
(n)eb

(n) . ~30!

In the following we report a detailed analysis of the equili
rium dynamics for a network of 400 minima, averaging ov
50 different extractions of the parameters that define
model. We measure the time autocorrelation function of
stress tensor, the shear viscosity, the structural relaxa
times, and the mass diffusion coefficient.

We first determine the time autocorrelation functions o
structural quantity which is well defined in all minimum con
figurations, i.e., the off-diagonal microscopic stress ten
~7!. The correlation function is

C~ t !5
1

3
@^szx~ t !szx~0!&1^Txy~ t !Txy~0!&

1^Tyz~ t !Tyz~0!&#. ~31!

The quantityOab in Eq. ~22! is, in this case,

Oab5
1

3
@^sa

zxsb
zx&1^Ta

xyTb
xy&1^Ta

yzTb
yz&#. ~32!

We have measured the correlation functions for differ
temperatures, fromT5150 to 20 K. In Fig. 7 we report the
normalized correlation functionsC(t)/C(0) at different tem-
peratures~open symbols! together with the best stretched e
ponential fit~lines!:

C~ t !5C~0!exp@2~ t/t!bk#. ~33!

Contrary to the MD computations, which result in a tw
steps behavior for the relaxation processes~one associated
with fast local dynamics and the other with structural slo
dynamics, the so-calleda structural processes!, the model
gives only one relaxation step, associated with the struct
processes, because the model can only describe the long

D

FIG. 7. Normalized autocorrelation functions of the off-diagon
microscopic stress tensor vs time at different temperatures, obta
from the model. In inset~a! we show theT dependence of the
stretching parameterbK , and in inset~b! the relaxation time vs 1/T,
both obtained from the stretched exponential fit of the autocorr
tion functions.
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behavior. The results we obtain with the present model
consistent with those of MD in the allowed region~i.e.,
aboveT;90 K, in order to avoid crystallization in the MD
computation!. In inset ~a! we show the temperature depe
dence of the stretching parameterbk . It emerges that the
structural relaxation dynamics is well represented by
stretched exponential decay, and that the stretching pa
eterbk is strongly temperature dependent.

Both results are well supported by experimental@9# and
numerical@10# observations. In our case the stretching p
rameterbk decreases from a value of;1 at high temperature
to bk;0.35 at low temperature, in agreement with expe
mental findings@9#.

From the behavior of the correlation functionC(t) we can
obtain information about the structural relaxation timet. The
values of t @inset ~b!# are determined from the stretche
exponential fits. We obtain an increase of many orders
magnitude in a small temperature range, as usually foun
many glass-forming liquids. However, we do not find t
dramatic increase of the Vogel-Tammann-Fulcher type
pected for a fragile glass former@11#. It is possible that the
observed Arrhenius behavior emerges as a peculiar prop
of the model, which would mean that the model is unable
capture the phenomenology of ‘‘fragility.’’ It is, howeve
possible that the Arrhenius law is a genuine property
glass-forming liquids with Lennard-Jones interaction, as s
ported by a comparison with a MD computation in the
lowed temperature range. It would be very interesting
compare the behavior obtained from the model to the ‘‘tru
behavior~in the sense of MD computation! in the full tem-
perature range~this is possible only for those systems th
avoid crystallization, like suitable binary mixtures!.

Finite size effects can also be responsible for the obse
Arrhenius behavior. The small size sample implies an up
bound to the energy barrier for the global rearrangement
then an Arrhenius upper bound to the relaxation timet
<toexpbNa, with to a system dependent constant. The
nite size study needed to verify the latter possibility is a v
hard task, the number of minima growing exponentially w
the number of particles. So we are not able to investig
more accurately the size effects and the reliability of
Arrhenius behavior is still an open question.

From the time autocorrelation functions of the o
diagonal microscopic stress tensor, we can determine
shear viscosity as@7#

h5
1

kBTVE0

`

dt C~ t !. ~34!

Also in this case, as for the relaxation times, we find a stro
increase in a small temperature range, fromh;1022 P at
T5150 K, toh;1011 P atT520 K. Again, we found there
was close correspondence between the model and MD
T.90 K, giving further support to the model.

The last quantity we measured in the model was the m
diffusion coefficient. In order to find it we determine th
mean square displacement

O~ t !5
1

N
ur ~ t !2r ~0!u25

1

N (
i 51

N

urW i~ t !2rW i~0!u2, ~35!
re

a
m-

-

-

f
in

-

rty
o

f
-

-
o
’

t

ed
er
nd

-
y

te
e

he

g

or

ss

from which we obtain the diffusion coefficient

D5 lim
t→`

O~ t !

6t
. ~36!

To evaluateD we use the quantityOab5dab
2 /N, wheredab

was defined in Eq.~10!. We again observe a strong increa
with an interesting behavior not simply linear on a doub
logarithmic scale@2#.

We conclude this section by analyzing the validity of t
Stokes-Einstein relation in the model. The Stokes-Einst
relation describes in a rigorous way the diffusive motion o
macroscopic object in a fluid, and predicts the following r
lation:

D}
T

h
. ~37!

The Stokes-Einstein relation also describes fairly well
diffusion at atomic scale in liquids at high temperatures.
lowering temperature, as observed in many experiments@12#,
one usually finds a breakdown of Eq.~37!. We found@2# that
at high T the model asymptotically satisfies the Stoke
Einstein relation, but upon decreasingT we observe a break
down of the relation and a fit over the lowest temperat
data of the type

D21}S h

TD j

~38!

that gives the value

j.0.28. ~39!

This value is in fairly good agreement with experimen
results found in fragile glass formers, like o-terphenyl@13#.

C. Off-equilibrium properties

Although introduced to analyze the long-time dynamic
the model allows an easy computation of the short-time, o
equilibrium dynamics. One of the main properties of gla
formers is the very strong increase of characteristic rel
ation times when temperature is lowered. If these times
come comparable to observational times, the system is
longer able to explore the full accessible phase space
then to reach the thermal equilibrium. The observed qua
ties are characterized by off-equilibrium processes. In t
regime the one-time quantities, such as energy or time
relation functions with fixed initial time, can no longer de
scribe the physics of the system. The usual translational t
invariance, valid in the equilibrium regime, is no more s
isfied. One of the most interesting consequences of that is
fact that the fluctuation-dissipation relation no longer ho
@14#. We concentrate on this property here.

Let H be the Hamiltonian of the system, andO a generic
observable dependent on microscopic variables. We de
the two time autocorrelation function

C~ t,tw!5^O~ t !O~ tw!&, ~40!

where we suppose thatt.tw, and ^•••& now means a dy-
namical average over initial conditions. We also introdu
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the response function to a perturbatione, which is coupled to
the observableO and gives rise to a perturbed Hamiltonia

H85H1e~ t !O, ~41!

The response is defined as

R~ t,tw!5
d^O~ t !&
de~ tw!

U
e50

, ~42!

where againt.tw . In the equilibrium regime the time trans
lational invariance implies the validity of fluctuation dissip
tion relation@15#

Req~t!5b
]Ceq~t!

]t
, ~43!

wheret5t2tw . Introducing the integrate response functi
x,

x~ t,tw!5E
tw

t

dt8R~ t,t8!, ~44!

Eq. ~43! takes the form

dx~C!

dC
5b. ~45!

In the off-equilibrium regime the fluctuation-dissipation rat
~45! is no longer valid. It is possible, however, to general
the ratio introducing a violation factorX(t,tw). The analyti-
cal study of some generalized mean field spin glass mo
@16# shows that the functionX(t,tw) depends on time only
through the correlation functionC: X(t,tw)5X@C(t,tw)#.
Using this property we can write a generalized fluctuatio
dissipation ratio in the off-equilibrium regime

dx~C!

dC
5bX~C!. ~46!

For short timest!tw we haveX(C)51, and the system
satisfies an equilibriumlike relation, even if it is confined in
small phase space region. For timest;tw the exploration of
the phase space is an off-equilibrium process, and this
plies the violation of the equilibrium fluctuation-dissipatio
ratio. In this case we haveX(C),1. The very interesting
relationship between off-equilibrium and equilibrium prope
ties of some generalized spin glass model suggests tha
the case of one step replica symmetry breaking, theX(C)
function depends only on temperature,

X~C!5m~T!, ~47!

andm(T) is linear inT at low temperature. It was recentl
suggested that structural glasses present a striking simil
with the generalized spin glass model with one step rep
symmetry breaking@17# ~for a recent interesting review, se
Coluzzi @19#!. We then also expect that for structural glass
the violation parameter would show a linear temperature
pendence in the violation regionX,1. Evidence of this be-
havior was found in a recent numerical study of binary m
tures@18#; we analyze this in our model.
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Let O„r (t)… be a generic observable that depends on c
lective coordinates at timet. The average value ofO in the
off-equilibrium regime in the model is

^O~ t !&5
1

M 8
(
a,b

Oapa~ t;b,0!, ~48!

wherea andb label the minima, and the sum overb is now
limited to a certain subset of minima. We chose theM 8
highest energy states. Expression~48! differs from the equi-
librium one, as the initial states are weighted with a const
term ~corresponding to an infinite temperature! rather than
with the Gibbs-Boltzmann equilibrium weight. In this wa
we describe an instantaneous quench at timet50 from T
5` to a finite temperatureT ~theT dependence is as usual
the probability pa). The sum restricted to theM 8 initial
states with highest energies (M 8,M whereM is the total
number of minima; in our caseM5400 andM 8520) allows
a better description of the off-equilibrium regime. We calc
late the time correlation functions in the model as

^O~ t !O~ tw!&5
1

M 8
(

a,b,c
OaObpb~ tw ;c,0!pa~ t;b,tw!,

~49!

where the sum overb is still made over theM 8 highest
minima. The quantity we determine is the time autocorre
tion function of the off-diagonal microscopic stress tens
szx:

C~ t,tw!5^szx~ t !szx~ tw!&2^szx~ t !&^szx~ tw!&. ~50!

The response function is determined by the perturbed Ha
tonian

H85H1e~ t !szx, ~51!

where the external fielde is

e~ t !5H 0 for t,tw

e for t>tw .
~52!

The perturbation induces a change in the energies of
minima:

Fa85Fa1e~ t !sa
zx . ~53!

The response function is

R~ t,tw!5
d^szx~ t !&e

de~ tw!
U

e50

. ~54!

^•••& is evaluated in the presence of the perturbatione,

^szx~ t !&e5
1

M 8
(

a,b,c
sa

zxpb~ tw ;c,0!pa
e~ t;b,tw!, ~55!

where pe is the solution of the master equation with th
perturbing term. For small perturbations we obtain
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x~ t,tw!5
^szx~ t !&e2^szx~ t !&e50

e
. ~56!

We have determined the correlation functionsC(t,tw) and
the responsex(t,tw) as functions oft for different timestw ;
the temperatures we analyze are in the rangeT5100–20 K.
The tw values are chosen in such a way thattw!t(T) for all
temperaturesT analyzed (t is now the relaxation time!. We
note that in the casetw@t the fluctuation-dissipation theo
rem is recovered, the average over initial conditions n
being over an equilibrium ensemble, with a Gibb
Boltzmann weight exp2bFa . The dynamical processes an
lyzed here are then in a time range which is very small co
pared to the time scale of the equilibrium. In determining
response functions we have used a value ofe small enough
(e50.1) to make the regime linear, as verified by tryi
different e values. In Fig. 8 we report the behavior ofx
versusbC at temperaturesT590 and 45 K, respectively
While at T590 K the relation betweenx and bC is to a
good approximation linear with slope 1 on the whole ran
~full line!, at lower temperature it is evident that after a fi
linear behavior with slope 1~full line! an approximately lin-
ear behavior with slope,1 takes on at longer times~dashed
line!, as theoretically and numerically expected. TheC val-
ues are not numerically comparable to theC equilibrium
values of Fig. 7, because we have used a more suitable
of the correlation. They correspond to the small time sc
values of the equilibrium behavior.

Moreover the slope of the second region decreases
lowering temperature: in Fig. 9 we show the slopem of the
violation region versusT. At high temperature the value ofm
is nearly 1, while below a temperature of about 60–70 Km
decreases linearly, as we expect in the hypothesis of one
replica symmetry breaking. Figure 9 is limited toT.40 K,
as for lower temperatures them values saturate to a limiting
value and it is no longer possible to extract correct inform
tion. This effect is probably due to the finite size of th
system, because the sampling of the initial off-equilibriu
states is not exhaustive (M 8520). In the equilibrium analy-
sis the finite size effects do not show up in the tempera

FIG. 8. The integrate responsex vs bC at temperaturesT590
K ( s) and T545 K (d). The value of the waiting time istw

5300 fs. The full line is the fluctuation-dissipation ratio, and t
dotted line is the best fit of the last points ofT545 K.
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range explored, as the sampling of the initial states is co
plete (M 85M ). In conclusion, from an analysis of the of
equilibrium properties of the model, it emerges that the
viation from the usual fluctuation-dissipation relation, va
in the equilibrium regime, is in agreement with theoretic
predictions and numerical findings in simple glass forme

IV. CONCLUSIONS

The very rich phenomenology of the cooling process
glass-forming liquids, of the glass transition, and of glas
systems in general, has received many important theoret
numerical, and experimental contributions in the last f
years. The present work is concerned with a numerical
vestigation of a simple model glass: a Lennard-Jones sys
of interacting particles. The main aim of the work was
determine the emergent properties of the system at the l
of the potential energy landscape. After a detailed analysi
the topological properties of the potential energy surface,
introduced a model which reproduces the long-time dyna
behavior of the system. While in the usual MD investigatio
of relaxation the computational times are proportional
physical times~with computational times of the order 105 s,
one obtains physical times of the order 1029 s for a system
of size N;103), our model allows the study at very lon
physical times in short computational times.

We studied both equilibrium and off-equilibrium prope
ties. The main equilibrium results we obtained are~i! the
stretching of the relaxation dynamics,~ii ! the temperature
dependence of the stretching parameter, and~iii ! the break-
down of the Stokes-Einstein relation. If they are genu
properties of the glassy system analyzed, they represen
triguing and interesting results that open fascinating qu
tions about the behavior of glassy and supercooled liquid

Although introduced to investigate the long-time dyna
ics, the model is also able to describe the off equilibriu
dynamics in a simple and direct way. The emergent violat
of the fluctuation-dissipation relation~that holds at equilib-
rium! is a very interesting feature, and supports many c
jectures about the analogy between structural glasses
some spin glass models@17#. Moreover, the appearance of

FIG. 9. The slopem in the region of violation of the fluctuation
dissipation ratio vs temperature. The straight line fits the data in
violation region.



ce
on
e

tu
’’

en
od
rip
th
th

like
re
lysis
es-

o,
ini
.

PRE 61 1691POTENTIAL ENERGY LANDSCAPE AND LONG-TIME . . .
critical temperature, below which the violation takes pla
seems to indicate the existence of a transition; the ‘‘inc
sistency’’ with the Arrhenius behavior of the relaxation tim
at equilibrium is an open question and deserves further s
ies ~finite size effects and reliability of the ‘‘rate equation
dynamics!.

In conclusion, the analyzed features of the potential
ergy landscape, and the emergent properties of the m
both at and off equilibrium, seem to provide a good desc
tion of glassy systems. The method is very powerful for
investigation of glassy properties by avoiding some of
.
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main problems usually encountered in numerical studies,
the very long computational times in the low temperatu
regime or the presence of crystal states. We hope the ana
we performed may constitute a promising route in the inv
tigation of glassy systems.
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