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Potential energy landscape and long-time dynamics in a simple model glass
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We analyze the properties of a Lennard-Jones system at the level of the potential energy landscape. After an
exhaustive investigation of the topological features of the landscape of the systems, obtained by studying small
size samples, we describe the dynamics of the systems in multidimensional configurational space by means of
a simple model. This considers the configurational space as a connected network of minima where the dynam-
ics proceeds by jumps described by an appropriate master equation. Using this model we are able to reproduce
the long-time dynamics and the low temperature regime. We investigate both the equilibrium regime and the
off-equilibrium one, finding those typical glassy behaviors usually observed in the experiments guch as
stretched exponential relaxatiofi,) a temperature-dependent stretching paraméter,a breakdown of the
Stokes-Einstein relation, ar(d/) the appearance of a critical temperature below which one observes a devia-
tion from the fluctuation-dissipation relation as a consequence of the lack of equilibrium in the system.

PACS numbes): 61.20.Lc, 64.70.Pf, 82.20.Wt

[. INTRODUCTION potential energy minima with a jump dynamics described by

an appropriate master equation. This allows us to obtain in-

The landscape paradigit] is a very useful point of view formation about the behavior of the system for times long
for the study of glassy systems. The detailed analysis of freenough that a direct molecular dynami¢4D) simulation is
energy or potential energy surfaces allows us to obtain innot feasible[2]. After a static(thermodynamicaltest of the

, ()

sight into the rich phenomenology exhibited by g|ass_model, we determine the dynamical equilibrium properties
forming liquids in the supercooled phase, around the glas§nd also the off-equilibrium ones, and discuss the results. In
transition region and in the low temperature glassy regimeSec. IV we report the conclusions.
While the investigation of the free energy surface is a very
hard task starting from a microscopic description of the sys- Il. POTENTIAL ENERGY LANDSCAPE
tem, since the landscape details are very strongly tempera- _ ) i )
ture dependent, the description of the potential energy land- e numerically investigate the topology of the potential
scape is a much more tractable problem, and is a gooNergy hypersurface of a Lennard-Jones 6—12 systeh of
starting point to investigate properties at not-too-high temiNtéracting particles in a cubic box with periodic boundary
peratures. The trajectory of the representative point of th&onditions. The pair potential is
system in config_u_rationgl phase space can be viewed as a 1 6
path in the multidimensional potential energy surface. The V,(r)=4e E) _(E)
. . . LJ

dynamics is strongly influenced by the topography of the r r
landscape: local minima, barrier heights, attraction basins,
and further topological features. In recent years it has beewith r the Euclidean distance between two particles. The
shown that the details of the potential energy surface are gfhysical parameters ande are chosen to describe an argon
great importance in determining the properties of many syssystem:o=0.3405 nm and/kg=125.2 K (kg is the Bolt-
tems exhibiting glassy behavior, like glass-forming liquidszmann constaptin order to obtain an exhaustive description
and protein folding, atomic cluster, or evolutionary biologi- of the energy landscape, we investigate small size systems,
cal models. with a number of particleBl<30. As we shall see later, such

In this paper we numerically investigate the low tempera-small systems can nevertheless exhibit quite complex behav-
ture dynamical properties of a simple system, i.e. a moniors.
atomic Lennard-Jones system, through an analysis of its mul- Due to the small size of the system, the range of interac-
tidimensional potential energy surface and a simple modefions among the particles is of the same order as the box
for the low temperature dynamics. In the first peéec. I, length. It is then much more appropriate to use a multi-image
by studying a small sample size, we give a comprehensiveiethod instead of the usual minimum image metf®fd in
description of the potential energy landscape of thewhich each particle interacts only with the nearest image
systems—minima, barriers, reaction paths, and saddléenerated by the periodic boundary conditjookall other
points—and determine statistical distributions and crossparticles. In our case many images contribute, and it is nec-
correlations between the analyzed quantities. In the secoreksary to consider them in the calculation of the interactions.
part (Sec. Ill), we use this information to set up a simple The choice we made introduces an angular dependence in the
model for the study of the long-time relaxation dynamics ofpair potential which, however, is negligible with respect to
the system: The model consists of a connected network dhe radial one. The simulated density ip=4.2
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70_' L an inherent configuration; the most useful quantity in deter-

] mining the spatial order structure of a minimum is its static
60 structure factor, which allowsimperfec) crystal-like con-
l figuration also of high energy to be identified.
50 .
1 2. Static structure factor
—_
E 407 il In order to classify the spatial distribution of particle in a

g 30_- Tty 12.”90*{2‘9: b A given minimum of the potential energy we use the static
= structure factor

] i 5 ] L. 1 .. ]
10- 7 —_— S(q)= 5|2 exnliq-r)) 2
i
0 qﬂm IH ﬂﬂ'ﬂﬂﬂ T T T T HI’1 = IHH T T ﬁa A .. . -
860 -850 -840 -830 -820 -810 -800 -790 Due to the finite size of the system the allowepgiectors are
&  (K) of the formg=(2x/L) n, with n=(n,,n,,n,) an integer
e vector. We define the quantity
FIG. 1. Distribution of the potential energin K per particlg of
the minima for the systeiN=29. In the inset the distribution of the 1 & 2
curvature isymin - S(a)= n. - > S, G

4 ge{q,Aq}

X102 mol/cn?, which was obtained by Demichelet al.  whereX;_ Aq iS @ SUM Over the, vectors with modulus
[5] as the smallest value at which a Lennard-Jones system @fithin q= Aq. For a pure crystalline configuration bf par-
N=864 argon particles is stable in the glassy state after &iclesS(q) consists of Bragg peaks, and its value at the peaks

rapid quench from high temperature. is Spax=N. For amorphous configuratiorS(q) does not
present a well defined peak structure, and the highest value is
A. Minima Smax—2—3, obtained for g value of the order of the inverse

mean distance of two near particles. For small sized systems,

As a first step we search for the potential energy minimayye those analyzed here, there are intermediate situations
We use a modified cqmuga}e grad|ent methqd starting .fronénd we use the criterio§,,,x<N/2 to determine the amor-
high temperature configurations obtained during a MD simus,

lation. In this way we find the so-called “inherent configu- phous nature of an inherent structure.

rations,” corresponding to local minima. New minima are

identified by their potential energy values. We analyze sys-

tems withN=11-29 and, for eaclN, we stop the search Another important property of a minimum is its overall

when the rate at which new low energy minima are foundcurvaturec, defined as the determinant of the Hesslzhof

(for example in lowest first third of the full energy range  the potential energy functiot:

smaller than a given numbéabout 104). In this way we

are able to obtain a good classification of the low energy c=de(®"). 4

minima. The number of detected minim&, does not show . ) ] .

a clear and well defined dependence Nncontrary to the The e|gen\_/alue_:s of thg Hessian ma_ltrlx are propornonal tp the

case of small clustef§], so that it is not possible to give an squared V|brat|_ongl e!genfrequenues. In the inset of Fig. 1

estimate of the coefficient in the expected exponential We show the distribution of

growth: Necexp(@N) (for clustersa~1). Indeed, for some

values ofN we observe a strong tendency of the system to _ 1 logyo(c/m)L2 (5)

fall always in the same minima. In this case an exhaustive YT 3N—3 P ’

research of the inherent structures is a very hard numerical

task. This explains the unclear dependence found. Once mogherem is the mass of the particlés/e use the argon value

minima are classified, we analyze their features: energyn=40 amy. The quantityy is thus proportional to the sum

static structure factor, curvature, and distances. of the logarithms of the frequencies of normal vibrational
modes

3. Curvature

1. Energy

The first important information about an inherent configu-
ration is its potential energy value. From the energy distribu-
tion it is sometimes possible to recognize the crystallinelike
configurations. Usually one finds an evident gap between theith «=1,...,3N—3 (the three zero frequencies corre-
lowest energy minima, the crystallinelike ones, and the othesponding to rigid translations have been eliminated from the
ones with higher energies, as can be seen in Fig. 1 where vgim). As can be seen in Fig. 1, the higheswalues corre-
show the distribution of minima energies per particle for  spond to the minima with lowest energy, i.e. the crystalline-
=29. In other cases the situation is not so clear, and it isike minima which are narrower and deeper than the other
useful to use a different method to characterize the nature gfacking structuregsee also Sec. I1C

1
v= 3N—3§ ho,, (6)
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For each minimum we determined the off-diagonal part of ] oo 1
the microscopic stress tensor, -680 b S -
- o’ -
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wherex;;, yj;, andz; are the components of;=r;—r;; r
these quantities will be useful in determining the shear vis- _ _
cosity. The form of the stress tensor we use is ¢fe0 FIG. 2 An example of the potentl_al. energy profile algng the
extrapolation of the-dependent expressigid] Ieast action path @) between two minima, compared with the
straight path Q) for the systenN=17.
- Fij alij,p L - . N L
aaﬁ(q)—z mvi,aviﬂ—z ——— Pq(rij) [expig-r;), ing salesman” problem The optimization problem we need
: N to solve is a bipartite matching problem, which can be done
8 in very short computational time by using an appropriate
with algorithm.
1—exp(ig-r) B. Barriers
Pq(l’)ZI’V(_J(r)_.,—_,. (9) . . T .
iq-r A very important topological quantity in determining the

dynamical behavior of the system is the energy barrier expe-
The indexes andj refer to particles, whilexr and3 label the  rienced by the system in traveling from one minimum to
spatial axesx, y, andz In Eqg. (7) we have omitted the another. At first sight it might seem that it is accurate enough
kinetic term, not well defined in an inherent configuration;to evaluate the barrier along the straight path joining two
our hypothesis is that also this truncated form is well able taninima in 3N-dimensional space. However, as shown by

describe the relaxation processes. Demicheliset al. [5], in most cases this produces much
higher barriers than an evaluation along the least action path,
5. Distances indicating that the straight path approximation is often not

We now turn to the relationships among the minima; ingood. We have then determined the least action path for each

particular we determined the mutual distances in thé@!l of minimaa and b, which is defined as the path that
3N-dimensional configuration space; in this regard it is im-Minimizes the action functional

portant to take into account all the symmetry operations of

the problem. Indicating with,=(r2, ... r2) the 3N coor- Si]= de\/Zm[qD(f(S))—q%], 11
dinates of the particles in the minimum we define the ! -
distanced,,, between minima andb,

wherel is a generic path between the miningas the cur-
— mi _ vilinear coordinate, andb,=min{®,,d,}. This functional
da Tryr:;:q[a [b|)' (10 problem is simplified by dividing{the pa}th into a finite num-
ber of intervals(typically we usen=16 interval$ and by
where the minimization is made with respect to the continu-minimizing the action function with respect to the extreme of
ous translationsT), discrete rotations and reflectionR),  the n segments constrained to move in hyperplanes perpen-
and permutationss#f) of the particles. dicular to the straight path. The highest potential energy
The minimization over the continuous translatidii$ is  value along the least action path determines the barrier
done by putting, sequentially, each particleaoh the same height and identifies the saddle point.
place as each one @f The minimization over the rotations We have only analyzed the system wiNi=17, due to the
and reflectiongR) is carried out by considering the 48 sym- very long computational times needed in the cases With
metry operations of the cubic group; the minimization over>17, where there are too many pairs of minima to take into
particle permutation4) is apparently a hard task to solve, as account. We report the results for the largest system ana-
one should consider all thl! possible configurations in a lyzed, N=17, with A’=38 minima. In Fig. 2 we show an
direct calculation, but this is not actually the case. The probexample of the potential energy profile along the straight
lem is of polynomial type, i.e., the time needed to find thepath (dashed lingand along the least action pathull line)
optimum solution grows as a polynomial function of the size,between two minima. It is evident that the energy barrier is
N, of the systenfon the other hand nonpolynomial problems significantly lower in the latter case, although the two paths
require an exponential computational time, i.e., the “travel-are not very distant in configuration space. Similar results are
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- r - r - r - r - 1 - 1T 1 TABLE I. Correlation coefficients for the measured quantities
804 [ 60 — 1 A x andy.
7
0 o N X y r
401 7 ]
0l o ] 1 29 D, Ca 0.13
- 7 29 P, Ya 0.46
8 20 . - ]
) o - 1 29 |D,— Dy dap 0.12
2 mmg W 29 I, — Dy In dyp, 0.17
= 1284 12.86 1288 1290 1292 1204 | 17 | Dy Dy dap 0.18
T, ] 17 IN®,— Dy In day, -0.11
% 17 D g Csad 0.23
1 17 (I)sad Vsad 0.49
O cacp o e 17 Cond Beag ~0.12
60 80 100 120 140 17 Yead In Z’sad ~031
a0, (K) 17 dap Ay, 0.47
17 Indyy, In Ay, 0.67
FIG. 3. Energy distribution of the barriers along the least action
paths among the minima of the syst&s17. The inset shows the
distribution of the curvaturey,,4 of the saddle points. - .
> =)=
obtained for the other analyzed paths. Sometimes it happens r(x,y)= : 1/2 (15)
that two minima are not directly connected, in the sense that " "
Y 2 607X (-y)?

the least action path joining them crosses a third minimum,
and a nontrivial connectivity among the minima emer@es
the analyzed system we find that each minimum on an avefor all the measured quantitiesandy. Table | shows the
age is directly connected to 20 other minim&or each vyalues obtained, together with the log-log correlations, in
saddle point along the least action path we determine thgrder to highlight possible power laws. The first column
main properties: energy, curvature, and down “frequency.”gives the number of particles of the system analy@sty
Figure 3 shows the energy distribution of the barriersfor N=17 have we determined the least action paths and all
ADy,,. The curvature is defined as the absolute value of th@he related quantities Overall, it appears that the energy
determinant of the Hessian of the potential energy evaluategifference and distance among the minima are not correlated,
at the saddle: indicating that the topological structure of the inherent con-
figurations is not energy correlated. A weak correlation is
Coag=|detd? . (12) ob;e_rved between energy and curvature at stationary points
(minima and saddle pointsin Fig. 4 we show the cross-
. . L .. correlation between the energies of the minima and their cur-
In the inset of Fig. 3 we show the distribution of the quantity 51,res. An interesting correlation is observed between bar-

rier energieA®,,, and distances among minintg, (Fig.

1 2 5), with a nearly linear correlation in double log scéiee in
Ysad= 33 10%10(Csad/ M) (13 the figurs.
~ T v T T T T T T T
The down “frequency”wg,qis defined as the square root of 780 . .
the absolute value of the down curvature along the least ac o °
tion path, -8004 i
-, VoL v g a0 ° 1
Wsad™ — 2 (14)
|v| : ’
M £ aa0- |
=]
wherev is the tangent vector to the least action path at the ] ° %
saddle point. -860 S T
H '880 1 v 1 M T v 1 v 1
C. Correlations 12.84 12.86 12.88 12.90 12.92
In order to obtain a full statistical description of the po- Y
mn

tential energy landscape, it is also useful to investigate their
cross-correlations, as well as the distributions of the different FIG. 4. Correlation between energies and curvatures of the
guantities. We then determined the linear correlation coeffiminima (N=29). The highest curvature values correspond to low
cient energy crystal minima.
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' ] trix), and a long-time dynamics consisting of collective
jumps (involving many atomsamong different stable posi-
tions. The main hypothesis we make is that there is a sub-
stantially clear separation of time scales between the two
dynamical processes. This characterization of the dynamics
is a good approximation at not-too-high temperatures. By
increasing the temperature, anharmonic effects become rel-
evant to the vibration around the local minimum and, more-
over, a clear time scale separation between fast vibrational
and slow jumps dynamics is no longer possible. In a recent
work [4] the validity of this hypothesis has been verified in
Lennard-Jones binary mixtures with a direct MD investiga-
_ tion. To sum up, our model, which is expected to capture the
10" physics of the system at low temperature, is based on two
main hypotheses(l) a clearcut difference between vibra-
tional dynamics at short time and dynamics of collective
jumps at long times; an¢2) a description of the long-time

FIG. 5. Correlation between energies of the barriers and dis-d namics throuah a master equation. with the transition rates
tances among minima, on a log sca={17). The line is the best y 9 q !

linear fit on a log scale, corresponding to a power lawitfie slope that depend on t.he topological properties of the potential
is a=3.7). surface. The main advantages of the model we have de-
scribed with respect to the usual MD computations are the

We conclude the analysis of the energy landscape by ddollowing. _ o
termining the entropy rati®, defined as the ratio between (& In @ simple way we can avoid the crystallization pro-

the curvature of saddle points and that of the related minim&€SS that always takes place in one component LJ systems, as
we do not consider the crystalline minima in setting up the

X)

d, (nm)

ab

" network.
|det(bsad| . .
= (16) (b) We can study in a direct way the low temperature
det® i, properties, where usually the very long relaxation times re-

Thi ity ai titati f the abilit fquire very long computational time. In MD the computa-
IS quantity gives a quantitative measure of the ability Olijo o) times are proportional to the physical times, while in
the system in finding the right path to reach another min

|_ . . .
L - the model introduced here the computational times are those
mum. If R~1, there are no entropic hindrances, whileRif b

. needed to find the eigenvalues and eigenvectors of the tran-
>1 these effects become relevant, as the narrowiagker 9 g

I ‘ th h qdl kes the | .__sition matrix, independent of temperature.
value of the curvatupeat the saddle makes the least action =) |1 is possible to show the relationships between the

path toward that specific minimum unfavorable with respectem_:‘rgy landscape and the behavior of the system
to other escape routes. For all the minimum-saddle-minimum To be more specific, the model is a connected ﬁetwork of

t;:plets we ha2ve evaluatdi;_; th_e majority of the_vr?ll:]es IS |r: potential energy minima and the master equation governing
the range 10°-10, in qualitative agreement with the results . jumps dynamics is

found in Lennard-Jones clustdis].

p
lll. MODEL FOR THE DYNAMICS d—:(t;b,to)=§cl W,cpc(t; b, 1), (17

The investigation of the properties of glass-former liquids ) N ) o
at the level of the energy landscape allows us to introduc&/N€repa(t;b.to) is the probability that the system is at mini-
some approximations in the dynamics of the system. Wénum a at timet, if it was at minimumb at time t,. The
define a simplified model which is able to capture the long-2ff-diagonal elements of the matri¥ are the transition rates.
time behavior of the system, and which consists of a cond he diagonal elements are fixed by the condition
nected network of potential energy minima with a jump dy-
namics among them described by an appropriate master > W,.=0. (18)
equation[2]. a

The basic idea is quite simple. A glass structure is repre- ] ) .
sented by a configurational point confined in a very smalll order to obtain an asymptotic beh_awor that rgproduces the
region of the accessible phase space and in the zero tempefight Boltzmann weight, the occupation probability must sat-
ture limit (neglecting quantum effegtsall the atoms are fro- isfy
zen in well-defined positions, corresponding to some me-

_chanically meta_stable state. W_hen the temperature is raised, |im pa(tib,to) = ng i(detq)g)fllz exg — D),

jumps among different mechanically stable positions become _ . z

possible. At finite and not-too-high temperatures we assume (19
the dynamically relevant processes are the following: a

short-time dynamics dominates by small vibrations around Z is such that,p2=1, and the pre-exponential factor fol-
stable positiongthis dynamics can be described within the lows from the harmonic vibration in each minimynand the
harmonic approximation by diagonalizing the dynamical ma-transition matrixXW must satisfy the detailed balance relation
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W,pPp=WhaP3 (200  between energies and distances among mihi2@aminima
connected to it, as obtained on an average for the system
The solution of the master equation is easily expressed i 17.
terms of eigenvalues\, and eigenvectorsal” (n (4) We define a connection matrix,,, containing the
=1,... M, with M the matrix dimensionof W: minimum steps, i.e., the number of minima crossed, neces-
sary to go froma to b; the distance matrixl,, is «,p, times
_ ol ") () B the value extracted _fr_om the distribution of the distances
Pa(tib,te)=(pP) ' alMaf? ex\n(t—to)]. (21) among connected minima fo¢=17.
" (5) For each pair of directly connected minima we deter-

In the numerical calculus it is more convenient to express th&1ine the energy barrierfd)bar from the value of the dis-
solutions in terms of the eigenvectors of a new symmetrid@ncedap: A®pa=A d* (A=10° and a=3.7, as deter-
matrix W,=W,p(pY/p)Y2 (whose eigenvalues coincide Mined forN=17 system, Fig. b

with those ofw): (6) We assign a curvature valur,4=|det .| and a
down “frequency” wg,qto each saddle point, from bivariate
distribution.

. —(n0/n0\1/2 (n) A(n) _
Pa(t;b,to) = (Pa/Pp) ; e ey exgAn(t—to)]. In this way we obtain a set of parameters that describes

(22)  the model. In order to achieve a good statistical description,

we considered different extractions of the parameters, and
The model is well defined once we give an appropriate fornthe measured quantities were obtained by averaging over the
to the transition matriXV. In order to determine the transi- extractions.
tion rates, let us analyze the problem of escape from a meta-
stable state; a useful point of view for systems with many A. Test
degrees of freedom is the description in terms of a few rel- Bef tudving the d ical i £ th del
evant coordinates. This reduction is possible whenever there ctore studying the dynamical properties ot the mode,

. . . - . we concentrate on the static behavior obtained as an
are few reaction coordinates with characteristic evolutionary

times longer than those of the other degrees of freedoma.SymIOtOtiC solution Qf th? master r—;quation. In _this static re-
which act as effective terms on the relevant coordinates i.egjlme we can determine, in a statistical mechanical approach,

like noise and viscous terms. We suppose this is the case f(t)pe configurational partition function

our system whenever the temperature is not too liigk . .

analysis of reaction paths made by Demichetigl. [5] sup- Z(,8)=f d®Nr exd — BD(ry, ... .rn)]. (29
ports this hypothesjsHandling the problem as a Markovian-

Brownian d-dimensional motion in the overdamped friction By ysing the approximation based on the hypothesis of short-
regime, we obtain the forr8] time local harmonic vibrations around a minimum, and long-
time collective jumps among different minima, we obtain

~5 y 112
w detd —
_Wsag| Cetdh exp{_M}, 23
© | |detd”, KgT Z(B)~2 zMrM(grexd - BP,], (25)
a

wherewg,qis the down “frequency” at the saddle point, and
u is a friction constant that determines the time sdéle
value is fixed by a comparison with MD in the allowed tem-
perature region

All the characteristics of the modgbroperties of the con-
nected network and parameters in the transition yades

wherea labels the minima, ang {"*"™ is the contribution of
harmonic vibrations around minimua This form of the
configurational partition function emerges in the model as
the exact infinite-time limit. The harmonic term is easy to
calculate, being al8-dimensional Gaussian integral,

inferred from the computed properties of the potential energy B

landscape. We use the values of tie 29 system to deter- Z(aharm)(ﬁ)=J drexr{ — STy

mine local minima propertieéenergy, curvature, and stress a -

tensoy, and those of th&l =17 system to determine connec- = (2m)3N2B~3N2(det d1) 12 (26)
tivity properties(energy and curvature of saddle points, dis-

tances, and connectivity among the minjmighe values are  wherer=(rq, ... rzy), and rdir==, .r(®2)mfm. We

extracted from the distribution found in Sec. Il in the follow- then obtain the approximated pa?tition function as
ing ways.
(1) We extractM energy values of the minima from the _ I
distribution of N=29 system(we exclude the crystallinelike Z(B)~cp Sleza: (det®y) "2 exp(—pP,), (27)
configurationg
(2) We assign to each minimum a value of curvatage  from which the thermodynamical quantities can be derived,
=det® extracted from a bivariate distribution, thanks to for example for the energi(B8)=—dzIn Z. To check the
the cross-correlation between energy and curvature; a stressliability of the model we compare the quantities calculated
tensor value is also extracted for each minimum. from Eq.(27) with those obtained through MD computation.
(3) For each minimum we randomly extra@h the analy- In Fig. 6 we show the potential energy as obtained from the
sis of the energy landscape we have found no correlatiomodel(lines) and from MD (circles. The MD data are ob-
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FIG. 6. Potential energy vs temperature as determined from MD Logm t (fs)

(N=29) and from the model. The MDY) are obtained by heating

the glass and@) cooling the liquid. The dotted line refers to the FIG. 7. Normalized autocorrelation functions of the off-diagonal

m?d?h usTg all the. minima, and the full line to the model using microscopic stress tensor vs time at different temperatures, obtained
only the glassy minima. from the model. In inseta) we show theT dependence of the

] ) ] ) . stretching parametesy , and in inse(b) the relaxation time vs T/,
tained in the following way. Starting from high temperature poth obtained from the stretched exponential fit of the autocorrela-
we rapidly quench the system to low temperature, entering ifion functions.

a glassy state; we then increase the temperature up to liquid

phase (open circles The system is subsequently slowly B 0,07 1/24(N) (1)

cooled, entering in the supercooled regid®0-70 K and <O(t)>_§n: exp()\nt);’:,) Oan(PaPp)"ea "€ . (30)

at the end obtaining the crystal through a first order transition . . ) -

(full circles). The lines represent the energies determinedn the following we report a detailed analysis of the equilib-

from the model by taking into account all the minirfgotted  fium dynamics for a network of 400 minima, averaging over

line) and only the glassy onétull line). A good quantitative 50 different extractions qf the parameters that d_eflne the

agreement is obtained between MD and the model as far 4nodel. We measure the time autocorrelation function of the

the temperature is lower than about 150 K, a temperature iﬁtress tensor, the shear viscosity, the structural relaxation

the liquid phase well above the melting poirit,(~80 K). t'm\?\f' ?nc: éhetz mass otl;:‘fu::_lon co?fﬂmen'l[. tion functi f

This result supports the correctness of the approximation of € 1irst determin€ the ime autocorretation functions ot a

local vibration and collective jumps in the description of a;tructqral qu.antlty which IS well deﬂn_ed N aII_m|n|mum con-

glass former at not-too-high temperature. This static test is gur_?::ons, "?".thef off—@agpnal microscopic stress tensor

good starting point to extend the analysis to the dynamical’)- The correlation function is

regime. 1
C(t)= §[<<fzx(t)<fzx(0)>+<Txy(t)Txy(0)>

B. Equilibrium properties

: : _ : T TY40))]. (31
We now determine the dynamical equilibrium properties

of the model. WithO(r(t),r(0)) we denote a generic ob- The quantityO,;, in Eq. (22) is, in this case,
servable which depends on collective coordinates timet 1
and at initial timet=0. We define the statistical average Oab:§[<a§xof,x>+(TQVTEV)+(T§ZT%;Z>]. (32
value of O in the model as
We have measured the correlation functions for different
(O(t))=>, pgz 0.P4(t;b,0), (28)  temperatures, frorT=150 to 20 K. In Fig. 7 we report the
b a normalized correlation functionS(t)/C(0) at different tem-
peraturegopen symbolstogether with the best stretched ex-
whereQ,,, is the value ofO evaluated at the minimum con- ponential fit(lines):
figurationsa andb: O,,=0(r,,rp). In terms of the eigen- _ _ By
values and eigenvectors of the transition matkixwe have CO=C0)exd ~ (t/n)™]. 33
Contrary to the MD computations, which result in a two-
steps behavior for the relaxation processmse associated
(O(1))=2 expAnt) >, OgpaMal™, (290  with fast local dynamics and the other with structural slow
n a.b dynamics, the so-called structural processgsthe model
gives only one relaxation step, associated with the structural
or, in terms of the eigenvectors of the symmetric mawix  processes, because the model can only describe the long-time
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behavior. The results we obtain with the present model aré&rom which we obtain the diffusion coefficient
consistent with those of MD in the allowed regidhe.,
aboveT~90 K, in order to avoid crystallization in the MD
computation. In inset(a) we show the temperature depen-
dence of the stretching paramet@g. It emerges that the
structural relaxation dynamics is well represented by &ro evaluateD we use the quantitY,,=d2,/N, whered,,
stretched exponential decay, and that the stretching paranyas defined in Eq(10). We again observe a strong increase
eter By is strongly temperature dependent. with an interesting behavior not simply linear on a double
Both results are well supported by experimen@l and  |ogarithmic scald2].
numerical[10] observations. In our case the stretching pa- We conclude this section by analyzing the validity of the
rameter, decreases from a value of1 at high temperature  Stokes-Einstein relation in the model. The Stokes-Einstein
to Bx~0.35 at low temperature, in agreement with experi-relation describes in a rigorous way the diffusive motion of a
mental findingq9]. macroscopic object in a fluid, and predicts the following re-
From the behavior of the correlation functi@{t) we can lation:
obtain information about the structural relaxation tim&he
values of 7 [inset (b)] are determined from the stretched T
o : . Do —. (37)
exponential fits. We obtain an increase of many orders of 7
magnitude in a small temperature range, as usually found in
many glass-forming liquids. However, we do not find the The Stokes-Einstein relation also describes fairly well the
dramatic increase of the Vogel-Tammann-Fulcher type exdiffusion at atomic scale in liquids at high temperatures. By
pected for a fragile glass formgt1]. It is possible that the lowering temperature, as observed in many experinéiais
observed Arrhenius behavior emerges as a peculiar propergne usually finds a breakdown of E§7). We found[2] that
of the model, which would mean that the model is unable t@t high T the model asymptotically satisfies the Stokes-
capture the phenomenology of “fragility.” It is, however, Einstein relation, but upon decreasifigve observe a break-
possible that the Arrhenius law is a genuine property ofdown of the relation and a fit over the lowest temperature
glass-forming liquids with Lennard-Jones interaction, as supdata of the type
ported by a comparison with a MD computation in the al- ¢
lowed temperature range. It would be very interesting to D—lm(Z) (38)
compare the behavior obtained from the model to the “true” T
behavior(in the sense of MD computatipin the full tem- .
perature rangéthis is possible only for those systems that that gives the value
avoid crystallization, like suitable binary mixtupes £=0.28 (39)
Finite size effects can also be responsible for the observed T

Arrhenius behavior. The small size sample implies an uppeThis value is in fairly good agreement with experimental

bound to the energy barrier for the global rearrangement angksults found in fragile glass formers, like o-terphefiy].
then an Arrhenius upper bound to the relaxation time,

=<7,exppNa, with 7, a system dependent constant. The fi- C. Off-equilibrium properties

nite size study needed to verify the latter possibility is a very i ) )
hard task, the number of minima growing exponentially with Although introduced to analyze the long-time dynamics,
the number of particles. So we are not able to investigatd® model allows an easy computation of the short-time, off-

more accurately the size effects and the reliability of the€Quilibrium dynamics. One of the main properties of glass
Arrhenius behavior is still an open question. formers is the very strong increase of characteristic relax-

From the time autocorrelation functions of the off- ation times when temperature is lowered. If these times be-
diagonal microscopic stress tensor, we can determine tHe?Me comparable to observational times, the system is no
shear viscosity af7] longer able to explore the fuI_I.ac.cessmIe phase space and

then to reach the thermal equilibrium. The observed quanti-
1 (= ties are characterized by off-equilibrium processes. In this
7= mj dt C(t). (34  regime the one-time quantities, such as energy or time cor-
B 0 relation functions with fixed initial time, can no longer de-
scribe the physics of the system. The usual translational time
Also in this case, as for the relaxation times, we find a strongnvariance, valid in the equilibrium regime, is no more sat-
increase in a small temperature range, frgm10 2 P at isfied. One of the most interesting consequences of that is the
T=150 K, to »~ 10" P atT=20 K. Again, we found there fact that the fluctuation-dissipation relation no longer holds
was close correspondence between the model and MD fgn4]. We concentrate on this property here.
T>90 K, giving further support to the model. Let H be the Hamiltonian of the system, afda generic

The last quantity we measured in the model was the massbservable dependent on microscopic variables. We define
diffusion coefficient. In order to find it we determine the the two time autocorrelation function
mean square displacement

o

D=Iim ot

t—oo

(36)

C(t,tw):<0(t)0(tw)>, (40)

N
1 1 - -
O(t)==|r(t)—r(0)2== D |F()—=F(0)[2, (35 where we suppose that-t,, and(---) now means a dy-
N'— - N =1 namical average over initial conditions. We also introduce
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the response function to a perturbatigrwhich is coupled to Let O(r(t)) be a generic observable that depends on col-
the observabl® and gives rise to a perturbed Hamiltonian: |ective coordinates at time The average value @ in the
off-equilibrium regime in the model is

"=H+€(t)0, (41)
The response is defined as (O(1))= i 2 0.p.(t;b,0), (48)
M’ ab
R(t,t,)= 50(t)) 42
(ttw)= Se(tw) | __y (42) wherea andb label the minima, and the sum ovelis now

limited to a certain subset of minima. We chose ¢

where agairt>t,,. In the equilibrium regime the time trans- highest energy states. Expressidg) differs from the equi-
lational invariance implies the validity of fluctuation dissipa- librium one, as the initial states are weighted with a constant

tion relation[15] term (corresponding to an infinite temperatumather than
with the Gibbs-Boltzmann equilibrium weight. In this way

_9Ceq(7) we describe an instantaneous quench at tim@ from T
Reo(T) =8 ar 43— o afinite temperatur& (the T dependence is as usual in

the probability p,). The sum restricted to th&1’ initial
wherer=t—t,,. Introducing the integrate response function states with highest energie8/( <M whereM is the total
X number of minima; in our casd =400 andM ' = 20) allows

a better description of the off-equilibrium regime. We calcu-

t late the time correlation functions in the model as
[ =J dt’R(t,t"), 44
x(tty) N (t,t") (44)
1
Eq. (43 takes the form (O(HO(ty))= YD aEbc O0a0pPy(tw:C.0pa(t;b,ty),
dx(C) s (49)
dC ' where the sum oveb is still made over theM’ highest

_ . _ o . minima. The quantity we determine is the time autocorrela-
In the off-equilibrium regime the fluctuation-dissipation ratio o fynction of the off-diagonal microscopic stress tensor
(45) is no longer valid. It is possible, however, to generalize zx.

the ratio introducing a violation factof(t,t,,). The analyti-

cal study of some generalized mean field spin glass models ¢ (t,t,)=(o?(t)0?(t,)) — (?(1))(a?(t,)). (50

[16] shows that the functioiX(t,t,,) depends on time only

through the correlation functiol€: X(t,t,)=X[C(t,t,)].  The response function is determined by the perturbed Hamil-
Using this property we can write a generalized fluctuation-tonian

dissipation ratio in the off-equilibrium regime

"=H+e(t)o™ (51
dx(C)
dc =BX(C). (40 \where the external field is
For short timesr<t,, we haveX(C)=1, and the system 0 for t<t,
satisfies an equilibriumlike relation, even if it is confined in a e(t)= (52
small phase space region. For timest,, the exploration of e for t=t,.

the phase space is an off-equilibrium process, and this im-

plies the violation of the equilibrium fluctuation-dissipation The perturbation induces a change in the energies of the
ratio. In this case we hav¥(C)<1. The very interesting minima:

relationship between off-equilibrium and equilibrium proper-

ties of some generalized spin glass model suggests that, in O,=D,+e(t)oy” (53
the case of one step replica symmetry breaking, X(€) o
function depends only on temperature, The response function is
X(C)=m(T), 4 Sa?X(1)),
(C)=m(T) (47) Rt <5E(t< ;> 50
andm(T) is linear inT at low temperature. It was recently W Te=0

suggested that structural glasses present a striking similari

with the generalized spin glass model with one step replic

symmetry breaking17] (for a recent interesting review, see

Coluzzi[19]). We then also expect that for structural glasses <sz(t)>e_i D PPty iC0P(Lb ),  (55)
" ab,c

gy -+ is evaluated in the presence of the perturbatipn

the violation parameter would show a linear temperature de- M

pendence in the violation regiok<1. Evidence of this be-

havior was found in a recent numerical study of binary mix-where p€ is the solution of the master equation with the
tures[18]; we analyze this in our model. perturbing term. For small perturbations we obtain
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FIG. 8. The integrate respongevs SC at temperature$ =90 ] ) o )
K (O) and T=45 K (®). The value of the waiting time i$,, FIG. 9. The slopenin the region of violation of the fluctuation-
=300 fs. The full line is the fluctuation-dissipation ratio, and the dissipation ratio vs temperature. The straight line fits the data in the
dotted line is the best fit of the last points Bt 45 K. violation region.
(6P(1)) .~ (a?(1)) range explored, as the sampling of the initial states is com-
x(t,t,) = < <0 (56)  plete (M’=M). In conclusion, from an analysis of the off-
€ equilibrium properties of the model, it emerges that the de-

viation from the usual fluctuation-dissipation relation, valid

We have determined the correlation functi@®,t,) and in the equilibrium regime, is in agreement with theoretical
the responsg(t,t,,) as functions ot for different timest,, ; predictions and numerical findings in simple glass formers.
the temperatures we analyze are in the rahgel00—20 K.
Thet,, values are chosen in such a way thg& 7(T) for all
temperature§ analyzed ¢ is now the relaxation time We
note that in the casg,> 7 the fluctuation-dissipation theo- The very rich phenomenology of the cooling process of
rem is recovered, the average over initial conditions nowglass-forming liquids, of the glass transition, and of glassy
being over an equilibrium ensemble, with a Gibbs-systems in general, has received many important theoretical,
Boltzmann weight exp Sd,. The dynamical processes ana- numerical, and experimental contributions in the last few
lyzed here are then in a time range which is very small comyears. The present work is concerned with a numerical in-
pared to the time scale of the equilibrium. In determining thevestigation of a simple model glass: a Lennard-Jones system
response functions we have used a value sfall enough  of interacting particles. The main aim of the work was to
(e=0.1) to make the regime linear, as verified by trying determine the emergent properties of the system at the level
different € values. In Fig. 8 we report the behavior gf  of the potential energy landscape. After a detailed analysis of
versus BC at temperature§ =90 and 45 K, respectively. the topological properties of the potential energy surface, we
While at T=90 K the relation betweery and BC is to a introduced a model which reproduces the long-time dynamic
good approximation linear with slope 1 on the whole rangebehavior of the system. While in the usual MD investigations
(full line), at lower temperature it is evident that after a firstof relaxation the computational times are proportional to
linear behavior with slope full line) an approximately lin-  physical timeswith computational times of the order %6,
ear behavior with slope1 takes on at longer timgslashed  one obtains physical times of the order £0s for a system
line), as theoretically and numerically expected. T&al-  of size N~10%), our model allows the study at very long
ues are not numerically comparable to t8eequilibrium  physical times in short computational times.
values of Fig. 7, because we have used a more suitable form We studied both equilibrium and off-equilibrium proper-
of the correlation. They correspond to the small time scalgies. The main equilibrium results we obtained &rethe
values of the equilibrium behavior. stretching of the relaxation dynamic6i) the temperature

Moreover the slope of the second region decreases bgependence of the stretching parameter, @ingdthe break-
lowering temperature: in Fig. 9 we show the slopef the  down of the Stokes-Einstein relation. If they are genuine
violation region versug. At high temperature the value of ~ properties of the glassy system analyzed, they represent in-
is nearly 1, while below a temperature of about 60—70vK, triguing and interesting results that open fascinating ques-
decreases linearly, as we expect in the hypothesis of one-stépns about the behavior of glassy and supercooled liquids.
replica symmetry breaking. Figure 9 is limited T0>40 K, Although introduced to investigate the long-time dynam-
as for lower temperatures tme values saturate to a limiting ics, the model is also able to describe the off equilibrium
value and it is no longer possible to extract correct informa-dynamics in a simple and direct way. The emergent violation
tion. This effect is probably due to the finite size of the of the fluctuation-dissipation relatiofthat holds at equilib-
system, because the sampling of the initial off-equilibriumrium) is a very interesting feature, and supports many con-
states is not exhaustivé(' =20). In the equilibrium analy- jectures about the analogy between structural glasses and
sis the finite size effects do not show up in the temperatursome spin glass model&7]. Moreover, the appearance of a

IV. CONCLUSIONS
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critical temperature, below which the violation takes placemain problems usually encountered in numerical studies, like
seems to indicate the existence of a transition; the “inconthe very long computational times in the low temperature
sistency” with the Arrhenius behavior of the relaxation time regime or the presence of crystal states. We hope the analysis
at equilibrium is an open question and deserves further studve performed may constitute a promising route in the inves-
ies (finite size effects and reliability of the “rate equation” tigation of glassy systems.

dynamics.

In conclusion, the analyzed features of the potential en-
ergy landscape, and the emergent properties of the model
both at and off equilibrium, seem to provide a good descrip- We acknowledge B. Coluzzi, G. Monaco, F. Sciortino,
tion of glassy systems. The method is very powerful for theand P. Verrocchio for useful discussions, and D. Leporini
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